首页> 外文OA文献 >Overexpression of survival motor neuron improves neuromuscular function and motor neuron survival in mutant SOD1 mice
【2h】

Overexpression of survival motor neuron improves neuromuscular function and motor neuron survival in mutant SOD1 mice

机译:存活运动神经元的过表达改善突变型SOD1小鼠的神经肌肉功能和运动神经元存活

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Spinal muscular atrophy results from diminished levels of survival motor neuron (SMN) protein in spinal motor neurons. Low levels of SMN also occur in models of amyotrophic lateral sclerosis (ALS) caused by mutant superoxide dismutase 1 (SOD1) and genetic reduction of SMN levels exacerbates the phenotype of transgenic SOD1G93A mice. Here, we demonstrate that SMN protein is significantly reduced in the spinal cords of patients with sporadic ALS. To test the potential of SMN as a modifier of ALS, we overexpressed SMN in 2 different strains of SOD1G93A mice. Neuronal overexpression of SMN significantly preserved locomotor function, rescued motor neurons, and attenuated astrogliosis in spinal cords of SOD1G93A mice. Despite this, survival was not prolonged, most likely resulting from SMN mislocalization and depletion of gems in motor neurons of symptomatic mice. Our results reveal that SMN upregulation slows locomotor deficit onset and motor neuron loss in this mouse model of ALS. However, disruption of SMN nuclear complexes by high levels of mutant SOD1, even in the presence of SMN overexpression, might limit its survival promoting effects in this specific mouse model. Studies in emerging mouse models of ALS are therefore warranted to further explore the potential of SMN as a modifier of ALS. © 2014 Elsevier Inc.
机译:脊髓性肌萎缩症是由于脊髓运动神经元中存活运动神经元(SMN)蛋白水平降低所致。低水平的SMN也发生在由突变型超氧化物歧化酶1(SOD1)引起的肌萎缩性侧索硬化症(ALS)模型中,并且SMN水平的遗传降低加剧了转基因SOD1G93A小鼠的表型。在这里,我们证明了散发性ALS患者的脊髓中SMN蛋白显着降低。为了测试SMN作为ALS修饰剂的潜力,我们在2种不同SOD1G93A小鼠品系中过表达了SMN。 SMN的神经元过表达显着保留了SOD1G93A小鼠脊髓的运动功能,挽救了运动神经元并减轻了星形胶质化。尽管如此,生存期并未延长,这很可能是由于有症状的小鼠运动神经元中的SMN定位错误和宝石消耗所致。我们的结果表明,在该ALS小鼠模型中,SMN上调可减慢运动功能障碍的发作和运动神经元的损失。但是,即使存在SMN过表达,高水平的突变SOD1破坏SMN核复合物也可能会限制其在特定小鼠模型中的存活促进作用。因此,有必要在新兴的ALS小鼠模型中进行研究,以进一步探索SMN作为ALS修饰剂的潜力。 ©2014爱思唯尔公司。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号